
 

 

Abstract—This paper presents a methodology for evaluating 

propositional logic satisfiability using resolution-refutation. The 

method applies a strategy based on an algebra developed by the 

authors that estimates the possible outcomes of the expression 

and generates a logic value for refuting or accepting the 

satisfiability of the argument. 

 

Index Terms—Algebraic logic, propositional logic, resolution-

refutation, tableau. 

I. INTRODUCTION 

RTIFICIAL intelligence’s main objective has been the 

construction of systems capable of replicating aspects 

that can be categorized as intelligent. Formally, “… is the set 

of techniques, methods, tools and methodologies that help us 

build systems that behave in a similar way to a human in the 

concrete problem resolution”. To achieve this, it is used logic 

among other resources, logic can be understood as a 

combination of language and semantics, to represent the 

knowledge related with the ability to perform certain 

reasoning [1]. 

To give a better understanding to logic, the algebraic logic 

is introduced, it can be described in general terms as “the 

discipline that studies logics by associating with them classes 

of algebras, classes of logical matrices and other algebra 

related mathematical structures that relates the properties of 

logics with algebraic properties of the associated algebra” [2].  

In this paper will be used the propositional logic or zeroth 

order logic; it is the simplest logic language, based in a 

numerable (not necessarily finite) of atomic propositions 

(AP). A proposition is an expression in natural language that 

can only be false (F) or true (T). A common form of 

representing all the evaluations is through the truth table; 

which is a complete enumeration of the value of the formula 

for all models. However, for evaluating larger expressions, the 
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truth table becomes infeasible since the complexity is of 

O(2𝑛) for a formula containing 𝑛 propositional variables, 

therefore, the tableau method was later introduced.  

The Tableau method is a formal proof procedure existing 

for several logics. It is based in a refutation or indirect proof 

procedure; showing a formula X is valid by intending to assert 

it is not with a syntactical expression. The expression is 

broken down syntactically by splitting it in several cases; this 

may be referred as the tableau expansion stage, it can be 

thought of as a generalization of disjunctive normal form 

expansion [3]. Finally, there are rules for closing cases; this is 

deriving impossibility conditions or contradictions based on 

syntax. If each case closes, the tableau can be considered 

closed. A closed tableau is proof of the validity of the 

expression X it began with. 

With the above in mind, it was developed an algebra of 

our own by enlarging the domain of the conventional Boolean 

logic of true, false, and indefinite. 

The paper is structured as follows. Section II gives a 

general background on the classic Tableau methodology and 

related implementations. Section III explains the methodology 

introduced by the authors. Section IV explains the algorithm 

and its implementation and mentions the software used for 

comparing the results. Section V presents the results and 

explains how the comparison was evaluated. Finally, 

Section VI presents the conclusions. 

II. BACKGROUND 

The Tableau methodology was introduced in the 1950’s by 

Beth and Hintikka and was later perfected by Smullyan and 

Fitting. It brings together the proof-theoretical and the 

semantical approaches to present a logical system, which is 

also very intuitive and has been broadly used according to [3]; 

the usages include implementation for circumscriptive 

reasoning as in [4], for interval temporal logic as seen in [5], 

for solving satisfiability check problems on Boolean 

circuits [6]. 

For the means of this article it is important to define 

propositional satisfiability and how it differs from 

propositional validity. Propositional satisfiability determines 

if there exists an interpretation that satisfies a given Boolean 

formula. This is, in words of Vardi [7] “The Boolean 

Satisfiability Problem (SAT, for short) asks whether a given 

Boolean formula, with Boolean gates such as AND and NOT, 
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has some assignment of 0s and 1s to its input variables such 

that the formula yields the value 1”. This problem is said to be 

NP-Complete, proved by Steven Cook in 1971. In [8], [9] 

validity is defined as an argument is logically valid if and only 

if its conclusion is a logical consequence of its premises. If an 

argument whose conclusion is β and whose only premise is α 

is logically valid, then α is said to logically imply β. Other 

pertinent definitions are tautologies and contradictions; a 

well-formed formula is a tautology if and only if it is true for 

all possible truth-value assignments to the statement letters 

making it up. On the other hand, a well-formed formula is a 

self-contradiction if and only if it is false for all possible truth-

value assignments to the statement letters making it up. 

III. METHODOLOGY 

The objective of this algorithm is to evaluate propositional 

logic satisfiability using a refutation proof and a novel algebra 

defined by the authors, to proof the satisfiability of an 

expression X by deducing that ¬X is not possible. Tableau 

proofs are originally presented as trees, whose nodes are 

formulas that are subcases and the tree structure gives the 

logical dependence between them [10], due to the structure 

the method uses, it is not trivial to implement in a 

programming language, requiring data structures advanced 

knowledge. With this in mind a simpler approach was 

conceived, which does not require graph structures and little 

processing. The presented method EZLogicUN is based on a 

general algebraic logic which considers not only the two 

Boolean states of true and false, but includes the following 

two expressions: 

 𝑞⋁¬𝑞 (1) 

 𝑞⋀¬𝑞 (2) 

From this point and by the means of simplifying the 

codification of the proposed method, the notation used 

replaces the operators: ∨ for +, ∧ for *, → for > and ¬ for −. 

In this way, the mentioned expressions are shown in Table I. 

TABLE I.  

NOTATION 

 

The functions used are: not (–), and (*) and or (+). The 

domain is limited to the expressions above and will be 

denominated by the numbers 0, 1, –1, 2, 3 accordingly. 

Table II shows the algebraic operations for an expression X 

and its negation. 

TABLE II. 

NOT OPERATOR 

 

The resulting expressions with the NOT operator can be 

inferred by propositional logic rules of negation. 2 and 3 

specifically, are a case of the De Morgan axiom [11]: 

−(𝑞 ± 𝑞) = −𝑞 ∗ − − 𝑞 = −𝑞 ∗ 𝑞 = 𝑞 ∗ −𝑞 
⇒ −2 = 3 

(3) 

−(𝑞 + −𝑞) = −𝑞 ∗ − − 𝑞 = −𝑞 ∗ 𝑞 = 𝑞 ∗ −𝑞 
⇒ −2 = 3 

(4) 

Table III presents the results of operating the expression X 

AND Y. Similarly to the NOT operator table, the results are 

deduced by applying simple propositional logic rules. The 

resulting inference that prevails is the one that avoids a 

contradiction if possible. 

TABLE III. 

AND OPERATOR 

 

In the same way is calculated the operations for the OR 

function in Table IV. The OR function gives the possibility to 

select the case in which no contradictions (resulting in 3) 

arises if possible. This is particularly useful while analysing 

all the possibilities for the values of the expression to be a 

propositional satisfiability. 

Expression Abbreviation 

Indefinite 0 

𝑞 1 

−𝑞 –1 

𝑞 + −𝑞 2 

𝑞 ∗ −𝑞 3 
 

X –X 

–1 1 

0 0 

1 –1 

2 3 

3 2 
 

X Y X * Y 

–1 –1 –1 

–1 0 –1 

–1 1 3 

–1 2 3 

–1 3 3 

0 0 0 

0 1 1 

0 2 2 

0 3 3 

1 1 1 

1 2 3 

1 3 3 

2 2 2 

2 3 3 

3 3 3 
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IV. IMPLEMENTATION 

For the means of comparing the outcomes of our 

implementation, EZLogicUN, there will be evaluated the 

same logic arguments on both; our algorithm which was 

programmed in a MATLAB [12] script and the LoTREC 

Tableau Prover [13] which runs under the Java Runtime 

Environment (JRE) [14]. Even though the process varies in 

both approaches, the satisfiability of the argument should 

prove to be the same in both tools. 

 

The proposed algorithm is a variation of the Tableau 

method, the principle of proving the validity of an argument X 

by deducing that ¬X is not possible remains. However, 

instead of looking for contradictions in the deductive process, 

this method aims to find a valid resolution, discarding the 

cases that lead to contradictions until there are no alternative 

cases or until the validity of ¬X has been proved, in which 

case X is invalid and therefore not propositionally satisfied. 

The algorithm is of recursive nature and the use of data 

structures is limited to arrays instead of Tableau’s tree 

structure. It consists of two phases, in the first phase the goal 

is to break down the expression and analyse its operators; for 

this, it is subdivided by identifying where there are 

parentheses, and then within each group, the operations are 

analysed, taking into account the precedence of the operators. 

The implication operator is transformed using the implication 

law, so that only ∙, + and – are left in the expression. 

After each case has been reduced to a simple operation, 

these are substituted by the notations of Table I, which covers 

all the possibilities. Next, the satisfiability of the whole 

expression is evaluated based on the algebra of Tables II, III, 

and IV for the corresponding operations. 

The final outputs of the algorithm are squared arrays that 

stand for no contradictions if 3’s are not found, or would 

proof the expression a contradiction if the opposite. The 

presence of 3 stands for a contradiction, implying that there is 

no possible outcome in which X is valid. 

To summarize, the phases of the algorithm can be 

presented as follows: 

1. Parentheses analysis. 

2. Transform implications. 

3. Divide the expression in simple operations (subcases). 

4. Replace using notation from Table I and present the 

expression as an array. 

5. Compare to check if there are contradictions (3’s) with 

the proposed algebras (Tables II, III, and IV). 

6. Output final arrays. 

V. RESULTS 

Table V shows the outputs of both programs evaluating 

the same logical expression for comparison purposes. As 

shown, the method introduced gives the same evaluation 

results as the classical tableau implementation of LoTREC. 

 
  

The following images are introduced to show a step by 

step of a classic Tableau Tree for evaluating some of the 

expressions in Table V. The images were generated using 

LoTREC, firstly it is presented a general structure of the tree 

and then each leaf node is extended to show if any 

contradiction arises (the word FALSE will indicate this at the 

end of the analysis) and to which branch of the tree the node 

belongs. If there if just one node forming the Tableau Tree as 

Fig. 1 then the node is displayed directly. 

The expression evaluated in Fig. 1, p ∙ −p, did not produce 

any branches during the tableau tree construction, rather it 

was concluded that the expression was FALSE in the first and 

only node of the tree. 

 

Fig. 1. Tableau tree node output by LoTREC for the expression 𝑝 ∙ −𝑝 

TABLE IV. 

OR OPERATOR 

X Y X + Y 

–1 –1 –1 

–1 0 0 

–1 1 2 

–1 2 –1 

–1 3 –1 

0 0 0 

0 1 1 

0 2 0 

0 3 0 

1 1 1 

1 2 1 

1 3 1 

2 2 2 

2 3 2 

3 3 3 
 

TABLE V. 

TESTS 

Argument EZLogicUN LoTREC 

𝑝 ∙ −𝑝 Contradiction Contradiction 

𝑞 + 𝑝 > 𝑝 + 𝑞 Satisfied Satisfied 

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞) Satisfied Satisfied 

𝑞 ∙ 𝑝 ∙ (𝑝 > 𝑞) Satisfied Satisfied 

𝑝 ∙ 𝑞 ∙ (𝑟 + −𝑞) Satisfied Satisfied 

𝑝 + −𝑝 Satisfied Satisfied 
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Fig. 2. Tableau tree structure output by LoTREC for the expression 𝑞 + 𝑝 >
𝑝 + 𝑞  

The next images depict the contents of each leaf node or 

premodel as stated by LoTREC of the tree in Fig. 2. These 

concluding leaf nodes are: premodel 1, premodel 2.1 and 

premodel 2.2. 

 

Fig. 3. Tableau tree node output by LoTREC of premodel 1 of the tree 

structure in Fig. 2. 

 

 Fig. 4. Tableau tree node output by LoTREC of premodel 2.1 of the tree 

structure in Fig. 2 

 

Fig. 5. Tableau tree node output by LoTREC of premodel 2.2 of the tree 

structure in Fig. 2 

Since none of the leaf nodes presents (Fig 3, 4, and 5) any 

contradiction as the premodel in Fig. 1. Then it is concluded 

that the expression 𝑞 + 𝑝 > 𝑝 + 𝑞 is TRUE.  

By using the script introduced by the authors for the 

expressions previously evaluated and explained in LoTREC, 

the script outputs the following arrays for expression 𝑝.−𝑝 in 

Fig. 6 from the MATLAB software [12]. The presence of 3’s 

in the output indicates that the expression is a contradiction 

and that there is no possible values for the formula that make 

it propositionally satisfied. Fig. 7 on the contrary does not 

include any 3’s in the output arrays, this indicates that there 

are values that satisfy the expression 𝑞 + 𝑝 > 𝑝 + 𝑞, which is 

in accordance to the output by the LoTREC software in Fig. 2 

to 5. 

The same analysis is done for expressions: (p > −q) ∙
(p > q) and p + −p. Analogously, the other expressions in 

Table V. were compared and analyzed to identify whether 

they were propositionally satisfied or contradictions. 

 

Fig. 6. Output array by EZLogicUN of the expression 𝑝.−𝑝. 

 

Fig. 7. Output array by EZLogicUN of the expression 𝑞 + 𝑝 > 𝑝 + 𝑞. 
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Fig. 8. Output tree by LoTREC of the expression (𝑝 > −𝑞) ∙ (𝑝 > 𝑞). 

 

Fig. 9. Pre-model 1 of the tree by LoTREC in Fig. 8 of the expression 

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞). 

 

Fig. 10. Pre-model 2.1 of the tree by LoTREC in Fig. 8 of the expression 

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞). 

 

Fig. 11. Pre-model 2.2 of the tree by LoTREC in Fig. 8 of the expression 

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞). 

 

Fig. 12. Pre-model 3 of the tree by LoTREC in Fig. 8 of the expression 

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞). 

 

Fig. 13.   Output array by EZLoginUN for the expression (𝑝 > −𝑞) ∙ (𝑝 >
𝑞). 

 

Fig. 14. Output array by EZLoginUN for the expression 𝑝 +−𝑝. 
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VI. CONCLUSIONS 

This paper has presented a novel approach for verifying 

the veracity of a zeroth order Boolean expression. The results 

obtained with this approach were compared to LoTREC. The 

implementation of the proposed approach requires simple data 

structures and its programming is straightforward due to the 

replacement policies based on the presented tables. Our 

method could improve the performance of decision-making 

systems based on logic sentences. 
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