

Abstract—This paper presents a methodology for evaluating

propositional logic satisfiability using resolution-refutation. The

method applies a strategy based on an algebra developed by the

authors that estimates the possible outcomes of the expression

and generates a logic value for refuting or accepting the

satisfiability of the argument.

Index Terms—Algebraic logic, propositional logic, resolution-

refutation, tableau.

I. INTRODUCTION

RTIFICIAL intelligence’s main objective has been the

construction of systems capable of replicating aspects

that can be categorized as intelligent. Formally, “… is the set

of techniques, methods, tools and methodologies that help us

build systems that behave in a similar way to a human in the

concrete problem resolution”. To achieve this, it is used logic

among other resources, logic can be understood as a

combination of language and semantics, to represent the

knowledge related with the ability to perform certain

reasoning [1].

To give a better understanding to logic, the algebraic logic

is introduced, it can be described in general terms as “the

discipline that studies logics by associating with them classes

of algebras, classes of logical matrices and other algebra

related mathematical structures that relates the properties of

logics with algebraic properties of the associated algebra” [2].

In this paper will be used the propositional logic or zeroth

order logic; it is the simplest logic language, based in a

numerable (not necessarily finite) of atomic propositions

(AP). A proposition is an expression in natural language that

can only be false (F) or true (T). A common form of

representing all the evaluations is through the truth table;

which is a complete enumeration of the value of the formula

for all models. However, for evaluating larger expressions, the

Manuscript received on February 25, 2015, accepted for publication on

June 23, 2015, published on October 15, 2015.
E. Zurek is with the Research in Robotics and Intelligent Systems group

at the Universidad del Norte, Barranquilla, Colombia (e-mail:

ezurek@uninorte. edu.co).
M. Zurbaran is with the GReCIS group at Universidad del Norte,

Barranquilla, Colombia (e-mail: mzurbaran@uninorte.edu.co).

M. R. Gamarra Gamarra is with the IET group, Department of Electronic
and Telecommunication Engineering, Universidad Autónoma del Caribe,

Barranquilla, Colombia (e-mail: margarita.gamarra@edu.co).

P. Wightman is with the GReCIS group at the Universidad del Norte,
Barranquilla, Colombia (e-mail: pwightman@uninorte.edu.co).

truth table becomes infeasible since the complexity is of

O(2𝑛) for a formula containing 𝑛 propositional variables,

therefore, the tableau method was later introduced.

The Tableau method is a formal proof procedure existing

for several logics. It is based in a refutation or indirect proof

procedure; showing a formula X is valid by intending to assert

it is not with a syntactical expression. The expression is

broken down syntactically by splitting it in several cases; this

may be referred as the tableau expansion stage, it can be

thought of as a generalization of disjunctive normal form

expansion [3]. Finally, there are rules for closing cases; this is

deriving impossibility conditions or contradictions based on

syntax. If each case closes, the tableau can be considered

closed. A closed tableau is proof of the validity of the

expression X it began with.

With the above in mind, it was developed an algebra of

our own by enlarging the domain of the conventional Boolean

logic of true, false, and indefinite.

The paper is structured as follows. Section II gives a

general background on the classic Tableau methodology and

related implementations. Section III explains the methodology

introduced by the authors. Section IV explains the algorithm

and its implementation and mentions the software used for

comparing the results. Section V presents the results and

explains how the comparison was evaluated. Finally,

Section VI presents the conclusions.

II. BACKGROUND

The Tableau methodology was introduced in the 1950’s by

Beth and Hintikka and was later perfected by Smullyan and

Fitting. It brings together the proof-theoretical and the

semantical approaches to present a logical system, which is

also very intuitive and has been broadly used according to [3];

the usages include implementation for circumscriptive

reasoning as in [4], for interval temporal logic as seen in [5],

for solving satisfiability check problems on Boolean

circuits [6].

For the means of this article it is important to define

propositional satisfiability and how it differs from

propositional validity. Propositional satisfiability determines

if there exists an interpretation that satisfies a given Boolean

formula. This is, in words of Vardi [7] “The Boolean

Satisfiability Problem (SAT, for short) asks whether a given

Boolean formula, with Boolean gates such as AND and NOT,

An Implementation of Propositional Logic

Resolution Applying a Novel Specific Algebra

Eduardo Zurek, Mayra Zurbaran, Margarita Gamarra, and Pedro Wightman

A

79 Polibits (52) 2015http://dx.doi.org/10.17562/PB-52-8 • pp. 79–84

IS
S

N
 2395-8618

mailto:ezurek@uninorte.edu.co
mailto:mzurbaran@uninorte.edu.co
mailto:margarita.gamarra@edu.co
mailto:pwightman@uninorte.edu.co

has some assignment of 0s and 1s to its input variables such

that the formula yields the value 1”. This problem is said to be

NP-Complete, proved by Steven Cook in 1971. In [8], [9]

validity is defined as an argument is logically valid if and only

if its conclusion is a logical consequence of its premises. If an

argument whose conclusion is β and whose only premise is α

is logically valid, then α is said to logically imply β. Other

pertinent definitions are tautologies and contradictions; a

well-formed formula is a tautology if and only if it is true for

all possible truth-value assignments to the statement letters

making it up. On the other hand, a well-formed formula is a

self-contradiction if and only if it is false for all possible truth-

value assignments to the statement letters making it up.

III. METHODOLOGY

The objective of this algorithm is to evaluate propositional

logic satisfiability using a refutation proof and a novel algebra

defined by the authors, to proof the satisfiability of an

expression X by deducing that ¬X is not possible. Tableau

proofs are originally presented as trees, whose nodes are

formulas that are subcases and the tree structure gives the

logical dependence between them [10], due to the structure

the method uses, it is not trivial to implement in a

programming language, requiring data structures advanced

knowledge. With this in mind a simpler approach was

conceived, which does not require graph structures and little

processing. The presented method EZLogicUN is based on a

general algebraic logic which considers not only the two

Boolean states of true and false, but includes the following

two expressions:

 𝑞⋁¬𝑞 (1)

 𝑞⋀¬𝑞 (2)

From this point and by the means of simplifying the

codification of the proposed method, the notation used

replaces the operators: ∨ for +, ∧ for *, → for > and ¬ for −.

In this way, the mentioned expressions are shown in Table I.

TABLE I.

NOTATION

The functions used are: not (–), and (*) and or (+). The

domain is limited to the expressions above and will be

denominated by the numbers 0, 1, –1, 2, 3 accordingly.

Table II shows the algebraic operations for an expression X

and its negation.

TABLE II.

NOT OPERATOR

The resulting expressions with the NOT operator can be

inferred by propositional logic rules of negation. 2 and 3

specifically, are a case of the De Morgan axiom [11]:

−(𝑞 ± 𝑞) = −𝑞 ∗ − − 𝑞 = −𝑞 ∗ 𝑞 = 𝑞 ∗ −𝑞
⇒ −2 = 3

(3)

−(𝑞 + −𝑞) = −𝑞 ∗ − − 𝑞 = −𝑞 ∗ 𝑞 = 𝑞 ∗ −𝑞
⇒ −2 = 3

(4)

Table III presents the results of operating the expression X

AND Y. Similarly to the NOT operator table, the results are

deduced by applying simple propositional logic rules. The

resulting inference that prevails is the one that avoids a

contradiction if possible.

TABLE III.

AND OPERATOR

In the same way is calculated the operations for the OR

function in Table IV. The OR function gives the possibility to

select the case in which no contradictions (resulting in 3)

arises if possible. This is particularly useful while analysing

all the possibilities for the values of the expression to be a

propositional satisfiability.

Expression Abbreviation

Indefinite 0

𝑞 1

−𝑞 –1

𝑞 + −𝑞 2

𝑞 ∗ −𝑞 3

X –X

–1 1

0 0

1 –1

2 3

3 2

X Y X * Y

–1 –1 –1

–1 0 –1

–1 1 3

–1 2 3

–1 3 3

0 0 0

0 1 1

0 2 2

0 3 3

1 1 1

1 2 3

1 3 3

2 2 2

2 3 3

3 3 3

80Polibits (52) 2015 http://dx.doi.org/10.17562/PB-52-8

Eduardo Zurek, Mayra Zurbaran, Margarita Gamarra, and Pedro Wightman
IS

S
N

 2395-8618

IV. IMPLEMENTATION

For the means of comparing the outcomes of our

implementation, EZLogicUN, there will be evaluated the

same logic arguments on both; our algorithm which was

programmed in a MATLAB [12] script and the LoTREC

Tableau Prover [13] which runs under the Java Runtime

Environment (JRE) [14]. Even though the process varies in

both approaches, the satisfiability of the argument should

prove to be the same in both tools.

The proposed algorithm is a variation of the Tableau

method, the principle of proving the validity of an argument X

by deducing that ¬X is not possible remains. However,

instead of looking for contradictions in the deductive process,

this method aims to find a valid resolution, discarding the

cases that lead to contradictions until there are no alternative

cases or until the validity of ¬X has been proved, in which

case X is invalid and therefore not propositionally satisfied.

The algorithm is of recursive nature and the use of data

structures is limited to arrays instead of Tableau’s tree

structure. It consists of two phases, in the first phase the goal

is to break down the expression and analyse its operators; for

this, it is subdivided by identifying where there are

parentheses, and then within each group, the operations are

analysed, taking into account the precedence of the operators.

The implication operator is transformed using the implication

law, so that only ∙, + and – are left in the expression.

After each case has been reduced to a simple operation,

these are substituted by the notations of Table I, which covers

all the possibilities. Next, the satisfiability of the whole

expression is evaluated based on the algebra of Tables II, III,

and IV for the corresponding operations.

The final outputs of the algorithm are squared arrays that

stand for no contradictions if 3’s are not found, or would

proof the expression a contradiction if the opposite. The

presence of 3 stands for a contradiction, implying that there is

no possible outcome in which X is valid.

To summarize, the phases of the algorithm can be

presented as follows:

1. Parentheses analysis.

2. Transform implications.

3. Divide the expression in simple operations (subcases).

4. Replace using notation from Table I and present the

expression as an array.

5. Compare to check if there are contradictions (3’s) with

the proposed algebras (Tables II, III, and IV).

6. Output final arrays.

V. RESULTS

Table V shows the outputs of both programs evaluating

the same logical expression for comparison purposes. As

shown, the method introduced gives the same evaluation

results as the classical tableau implementation of LoTREC.

The following images are introduced to show a step by

step of a classic Tableau Tree for evaluating some of the

expressions in Table V. The images were generated using

LoTREC, firstly it is presented a general structure of the tree

and then each leaf node is extended to show if any

contradiction arises (the word FALSE will indicate this at the

end of the analysis) and to which branch of the tree the node

belongs. If there if just one node forming the Tableau Tree as

Fig. 1 then the node is displayed directly.

The expression evaluated in Fig. 1, p ∙ −p, did not produce

any branches during the tableau tree construction, rather it

was concluded that the expression was FALSE in the first and

only node of the tree.

Fig. 1. Tableau tree node output by LoTREC for the expression 𝑝 ∙ −𝑝

TABLE IV.

OR OPERATOR

X Y X + Y

–1 –1 –1

–1 0 0

–1 1 2

–1 2 –1

–1 3 –1

0 0 0

0 1 1

0 2 0

0 3 0

1 1 1

1 2 1

1 3 1

2 2 2

2 3 2

3 3 3

TABLE V.

TESTS

Argument EZLogicUN LoTREC

𝑝 ∙ −𝑝 Contradiction Contradiction

𝑞 + 𝑝 > 𝑝 + 𝑞 Satisfied Satisfied

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞) Satisfied Satisfied

𝑞 ∙ 𝑝 ∙ (𝑝 > 𝑞) Satisfied Satisfied

𝑝 ∙ 𝑞 ∙ (𝑟 + −𝑞) Satisfied Satisfied

𝑝 + −𝑝 Satisfied Satisfied

81 Polibits (52) 2015http://dx.doi.org/10.17562/PB-52-8

An Implementation of Propositional Logic Resolution Applying a Novel Specific Algebra
IS

S
N

 2395-8618

Fig. 2. Tableau tree structure output by LoTREC for the expression 𝑞 + 𝑝 >
𝑝 + 𝑞

The next images depict the contents of each leaf node or

premodel as stated by LoTREC of the tree in Fig. 2. These

concluding leaf nodes are: premodel 1, premodel 2.1 and

premodel 2.2.

Fig. 3. Tableau tree node output by LoTREC of premodel 1 of the tree

structure in Fig. 2.

 Fig. 4. Tableau tree node output by LoTREC of premodel 2.1 of the tree

structure in Fig. 2

Fig. 5. Tableau tree node output by LoTREC of premodel 2.2 of the tree

structure in Fig. 2

Since none of the leaf nodes presents (Fig 3, 4, and 5) any

contradiction as the premodel in Fig. 1. Then it is concluded

that the expression 𝑞 + 𝑝 > 𝑝 + 𝑞 is TRUE.

By using the script introduced by the authors for the

expressions previously evaluated and explained in LoTREC,

the script outputs the following arrays for expression 𝑝.−𝑝 in

Fig. 6 from the MATLAB software [12]. The presence of 3’s

in the output indicates that the expression is a contradiction

and that there is no possible values for the formula that make

it propositionally satisfied. Fig. 7 on the contrary does not

include any 3’s in the output arrays, this indicates that there

are values that satisfy the expression 𝑞 + 𝑝 > 𝑝 + 𝑞, which is

in accordance to the output by the LoTREC software in Fig. 2

to 5.

The same analysis is done for expressions: (p > −q) ∙
(p > q) and p + −p. Analogously, the other expressions in

Table V. were compared and analyzed to identify whether

they were propositionally satisfied or contradictions.

Fig. 6. Output array by EZLogicUN of the expression 𝑝.−𝑝.

Fig. 7. Output array by EZLogicUN of the expression 𝑞 + 𝑝 > 𝑝 + 𝑞.

82Polibits (52) 2015 http://dx.doi.org/10.17562/PB-52-8

Eduardo Zurek, Mayra Zurbaran, Margarita Gamarra, and Pedro Wightman
IS

S
N

 2395-8618

Fig. 8. Output tree by LoTREC of the expression (𝑝 > −𝑞) ∙ (𝑝 > 𝑞).

Fig. 9. Pre-model 1 of the tree by LoTREC in Fig. 8 of the expression

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞).

Fig. 10. Pre-model 2.1 of the tree by LoTREC in Fig. 8 of the expression

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞).

Fig. 11. Pre-model 2.2 of the tree by LoTREC in Fig. 8 of the expression

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞).

Fig. 12. Pre-model 3 of the tree by LoTREC in Fig. 8 of the expression

(𝑝 > −𝑞) ∙ (𝑝 > 𝑞).

Fig. 13. Output array by EZLoginUN for the expression (𝑝 > −𝑞) ∙ (𝑝 >
𝑞).

Fig. 14. Output array by EZLoginUN for the expression 𝑝 +−𝑝.

83 Polibits (52) 2015http://dx.doi.org/10.17562/PB-52-8

An Implementation of Propositional Logic Resolution Applying a Novel Specific Algebra
IS

S
N

 2395-8618

VI. CONCLUSIONS

This paper has presented a novel approach for verifying

the veracity of a zeroth order Boolean expression. The results

obtained with this approach were compared to LoTREC. The

implementation of the proposed approach requires simple data

structures and its programming is straightforward due to the

replacement policies based on the presented tables. Our

method could improve the performance of decision-making

systems based on logic sentences.

REFERENCES

[1] J. T. Palma Méndez and R. L. Marín Morales, Inteligencia artificial:

técnicas, métodos y aplicaciones. Aravaca: McGraw-Hill Interamericana

de España, 2008.

[2] R. Jansana, “Propositional consequence relations and algebraic logic,” in

The Stanford Encyclopedia of Philosophy, 2011.

[3] M. D’Agostino and D. M. Gabbay, Handbook of tableau methods.

Springer, 1999.

[4] I. Niemelä, “Implementing circumscription using a tableau method,” in

ECAI, 1996, pp. 80–84.

[5] P. Wolper, “The tableau method for temporal logic: An overview,”

Logique et Analyse, vol. 28, no. 110–111, pp. 119–136, 1985.

[6] T. A. Junttila and I. Niemelä, “Towards an efficient tableau method for

Boolean circuit satisfiability checking,” in Computational Logic — CL

2000, Springer, 2000, pp. 553–567.

[7] M. Y. Vardi, “Boolean satisfiability: Theory and engineering,”

Commun. ACM, vol. 57, no. 3, pp. 5, 2014.

[8] “Propositional Logic | Internet Encyclopedia of Philosophy”.

[9] P. D. Magnus, “An Introduction to formal logic,” University at Albany:

State University of New York, 2008.

[10] A. J. A. Robinson and A. Voronkov, Handbook of Automated

Reasoning. Elsevier, 2001.

[11] H. K. Büning and T. Lettmann, Propositional Logic: Deduction and

Algorithms. Cambridge University Press, 1999.

[12] “MATLAB—The language of technical computing.” [Online].

Available: http://www.mathworks.com/products/matlab/. [Accessed: 23-

Jan-2015].

[13] L. F. del Cerro, D. Fauthoux, O. Gasquet, A. Herzig, D. Longin, and F.

Massacci, “Lotrec: The generic tableau prover for modal and description

logics,” in Automated Reasoning, Springer, 2001, pp. 453–458.

[14] “Java Software | Oracle.” [Online]. Available: https://www.oracle.com/

java/index.html. [Accessed: 23-Jan-2015].

84Polibits (52) 2015 http://dx.doi.org/10.17562/PB-52-8

Eduardo Zurek, Mayra Zurbaran, Margarita Gamarra, and Pedro Wightman
IS

S
N

 2395-8618

